PHYSICAL REVIEW E 69, 056607(2004)

Dynamics of the Ablowitz-Ladik soliton train
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It is shown that dynamics of a train &f weakly interacting Ablowitz-Ladik solitons witlalmos) equal
velocities and masses is governed by the complex Toda chain model. The integrability of the complex Toda
chain model provides the means to describe analytically various dynamical regimes\s&ttieon train and
to predict initial soliton parameters responsible for each of the regimes. Numerical simulations corroborate well
analytical predictions. A specific feature arising for the discrete soliton train system is the appearance of an
additional (with respect to the lattice spacingpatial scale-intersoliton distance. We comment on interplay
between both spatial scales.
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[. INTRODUCTION coherent structures in discrete systefh3,14. A model of
o ] ) two coupled AL lattices which admits a reduction to inte-
Currently energy |0cal|zat|0n n non“near |att|CeS haS at'grab|e Symmetric states was Considered by Ma|0med and
tracted a great deal of attention. For recent reviews we refeyang[15].
to Refs.[1,2]. Two equations are frequently used to study |n this paper we address a new issue concerning the dis-
nonlinear discrete systems—the discrete nonlineatrete solitons—to describe analytically dynamics of a dis-
SchrédingeDNLS) equation and the Ablowitz-LadikAL)  crete soliton train. An interesting problem of characterization
equation. Though both of them represent discretizations obf solitons present in numerical or experimental data has
the completely integrable continuous nonlinear Schrodingebeen discussed by Boki al. [16] in the context of a train of
(NLS) equation, their properties are crucially different. The envelope wave pulses modeled by the AL equation on a finite
DNLS equation, arising in many areas as an adequate modénterval. By a soliton train is meant an ordered sequendé of
is nonintegrable[3,4] and admits quantitative investigation discrete (temporal or spatial weakly interacting solitons
numerically, as a rule. Contrary, it is the AL equation thatPropagating(or extending in the same direction withal-
makes the integrable discrete counterpart of the NLS equdl0sh equal velocities. Though this problem has been con-
tion [5], hence enabling us to perform as complete as possidered for continuous systenfd7-2Q, a novel feature
sible analytical description of an underlying discrete system2/iS€S in the discrete case. Namely, two spatial scales appear

As compared with the DNLS equation, the AL equation!n a discrete system for a soliton train-lattice spacing and

found a rather limited area of applications Nevertheless'rmersflitok;1 distanci. Hence, a (1ue5t|__i2°n car|1 bSe po%ed about
. A ' Interplay between these two scales. Recently Soto-Crespo
there exist at least two reasons justifying a comprehensivi I. [21] put forward some arguments in favor of a relevance

analy5|s of the AL equation. First, th'$ equation Serves as Jg o a1 equation for the description of soliton dynamics in
proving ground for testing new analytical and numerical ap-, waveguide array with account for coupling through a non-

proaches to study discrete syste(eg., study of numerical jinoar medium located between the waveguides. In this con-
homoclinic |nstab|_I|t_|es for_the DNLS and AL equatiofts). nection, as an example of a concretization of the problem
S_econd, for a definite region of parameters, the DNLS €qU850sed in our paper, we can refer to simultaneous launching
tion can be trgated asa p(_erturbed Version of.the AL equatiory power to different places of a nonlinear waveguide array.
thereby allowing for considerable progress n thg analytica vidently, different distributions of power are possible at the
study in the framework of the AL soliton perturbation theory. exit of this device. We give for the AL equation an efficient

This idea has been initiated in early papers by Vakhnenkg,,\ tical description, on the basis of the complex Toda

aﬁd. Gati)dide_i[7]hon a séoliton mbotign ina disc(;etlt_a mo'}?cﬁlar chain(CTC) model, of various regimes of power distribution
chain, by Kivshar and Campbel8] on a modeling of the = 54 iy particular, predict values of initial soliton parameters

Pe|erls-Nabarro potential barrlgr, and b.y Acegeal. [9] on . to provide a bound-state-like evolution of the discrete soliton
the self-trapping phenomenon in one-dimensional Wavegwdﬁ.ai

arrays[10]. Recently, the same approach has been employed In. Sec. | we formulate a model and identify a region of

to study d|screte.solr|;co|r_1 dlynamlc_:s ”1] rand(()jmd.mt_apla_], the AL solitons’ parameters which provide a trainlike con-
energy transport ire-helical proteins[12], and dissipative g, ration of solitons. Section Il is devoted to a derivation of

the Toda chain model. Here we emphasize a crucial differ-
ence between the dynamical regimes admitted by the real

*Electronic address: doktorov@dragon.bas-net.by and complex Toda models. In Sec. Illl we continue a discus-
"Electronic address: matsuka@im.bas-net.by sion of the interrelation between the AL model and the CTC
*Electronic address: v.m.rothos@qmul.ac.uk model and perform a detailed analysis of such an interrela-
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tion for the particular case df=3. From an analysis of the Now we formulate more precisely conditions on the soli-
integrals of motion of the CTC model we predict values oftons’ parameters providing the trainlike configuration. Let us
initial AL solitons’ parameters responsible for particular dy- denotey;=hu;(n-x;) and takex;,;>x;. Then
namical regimes of the AL soliton train dynamics. Section IV

. . . o . i Wis1 = i
contains a comparison of analytical predictions with the re Yje1= (1 _ _J__l>yj = hpt (X1 = %)

sults of numerical simulations. i

We pose
IIl. THE AL SOLITON TRAIN MODEL |tjen = | < pe. (2.9
As is well known[5], the AL equation(the overdot de- This condition means that solitons have almost equal masses.
notes time derivative Therefore,y;.;—y;~—hu(x;;;—X;)) and in accordance with
our assumption about the tail-tail interaction we should pose

1
Up + hz(Un+1 + Un-1 2un) + |un| (un+1 + un—l) 0 h/-L|inl - Xj| >1. (2.5)

(2.1)  Considering the phase differengg,; of the phasesik(n

—X;) +a; of adjacent solitons, we represent it as

for a scalar complex functiom defined on an infinite 1D ]

lattice with the lattice spacinlg has an exact soliton solution Xiv1j = 11K 1 = KDY, = hKo1(Xi1 = X) + o1 — .
u(t) = sinhhu exp[ikh(n-x) +ia] (2. The proximity of soliton velocities implies the validity of the
" h coshhu(n-x) ' condition

where Kjs1 — K| < e, (2.6

2t sinhhu o with the result that the phase difference is written as

X(t) = —————sinhk+x",
h  hou M~ M1
Xj+1y =~ K| 1+ (Xje1 = X)) + aje1 ~ .
ot K Mij+1
a(t) = F(coshh,u coshk+ —sinh hu sin hk- 1) +a0, Finally, the condition
M 1

The solution(2.2) depends on four real parametgrgsoliton hlgj = pllx; = Xj2a| < 1 (2.7)
mass M =2hw),  k  [group  velocity , U9 makes it possible to write the phase difference as
=(2/h“w)sinhhu sinhk and phase velocity ,,=(2/h“k)(1
—coshhu coshk)], x© (soliton initial position, and a(© Xj+1j =~ hK(Xj11 = X)) + @j41— @

(initial phaseg. The inverse spectral transform method pro-
vides the complete analytical description of the AL soliton
interaction in a generic case bf solitons moving with pair-
wise different velocities and being asymptotically free for
n— xo [5]. Contrary, we are interested here in a chain-like
configuration of an ordered sequenceMf(N=2) weakly
interacting solitons witt{nearly equal masses and velocities Ill. THE COMPLEX TODA CHAIN MODEL
that are spaced apart almost equally. In other words, we sup-
pose that theN-soliton solution to the AL equation for the
soliton train is a result of the evolution of the initial configu-
ration

with the mean valu&= N‘lE]N:lkj. The conditiong2.4)—2.7)
represent the discrete analog of the corresponding conditions
formulated within the quasiparticle approach for continuous
equationg22].

Substituting the sumlike solution into E@.1), we obtain
that thejth soliton is governed by the perturbed AL equation

N i+ S5y + iy = 20) + [y + iy = el
Un(0) = 121 u(0), (3.

representing a sum of weakly overlapping one-soliton exciyyhere the perturbatiogihe overbar means complex conjuga-

tations each of which is characterized by the parametgers tion)
ki, xJ@, anda'?. The smallness of the adjacent soliton over- erd = — U2l + ozl + o0 + oDy - [u@ -
lapping is determined by a small parameter . N . . .
0 0 A R sl uly G2
= exp(— hulx” = x;11) 2.3 . . . : . .

¢ = hi L Jﬂ|) 23 results from the interaction of neighboring solitons with the
e<1 for all j and u is the mean vaIue,u=N‘1EJ“:1,uj. We  jth soliton. Within the limits of the adiabatic approximation
consider the interaction force between the neighboring solief the soliton perturbation theory, a perturbation-induced

tons being of the order of their overlap. Therefore, we restricevolution of the parameterg; andk; is given by the equa-
ourselves by the nearest-neighbor interaction. tions [7]
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. _sinhhy; < Im(eR))coshy;
H h == coshy; + huj)coshy; - hy;)’
__sinhhy; < Re(eR)sinhy,
: h == cosHy; + huj)cosHly; — hu)’

3.3

where Rﬂ)=rf{)exp[—ihkj(n—xj)—iaj]. Substituting the soli-
ton (2.2) into the perturbation formul&3.2) and performing
calculation according to Eq3.3), we obtain evolution ofy;
andk; in the form(no summation in repeated indiges

. sint?h 5 - .
=8 ! H ~ > S“e_Ail[COS)(“(COth hu = (hw) ™Ysin hk
I=j+1
+sin’y; coshk], (3.49
- int°h ~
k=8 S s e Bifsin ¥ (coth hu — (hya)Y)sin hk

j 4
h*  \5i

— cosyjcoshk]. (3.4b
HereSj’ji.]_: ¥1, Z” =Sj|Aj|, ‘5'(" :Sj|Xj|! and
Aj| =h,LL(X] —X|), Xjl =—hk(XJ' —X|)+C¥j - q. (35)

In the process of calculating the sums in E8.3) we in-
voked the Poisson summation formy2g]

> f(nm=—f dy f<y>[1+22cos”—sy]
n=-c HJ = =1 2

and neglected the terms with the facteexp(-m?s/u),s

PHYSICAL REVIEW E 69, 056607(2004)

cot hk

= arctan———————.
YA = (hya) L

Hence, a quantity\;=pu;+ik;—(u+ik) obeys the evolution
equation

. sinhhy .
Nj=2 2 (Ejj-1~ Ejs1j)p€”, (3.7
where
E“-_lz(4/h2)exﬁ—A”_1+i)(j’j_l—Ziw). (38)

In turn, it follows from Eqs(3.5) and(3.6) that

: 2 -
—Ap+ix=- H(M - \)pe ¥sinhhu.

Therefore,

Ej,j—l == (2/h)()\j - Aj-l)Ej,j_lpe_il/’Sinh h,u.

This relation suggests that we can wrig; ; as Ej;_;
=exp(d;—0g;-1), where a complex functiog; obeys the evo-
lution equation

g, == (2I)\;pe”'sinh hy (3.9
and hence
] _ ) .2 sinhh
q=- h(w + |k)xj +iaj+ (,u,vgr+ Ikvph)t +2j |HTM
- 2ij ¢, (3.10

with vy, anduy, being the mean group and phase velocities
which are given by the same relations as for the single soli-
ton (2.2) but for mean values ofc andk. Now it is straight-
forward to show due to Eq$3.7) and(3.9) that the function

=1,2, ... which for =1 are small. It can be shown that the 9 Obeys the completely integrable complex Toda chain
mean valuesw and k calculated along these lines do not (CTC) equation withN nodes

depend on time, as should be. As regards the evolution of the
parameters; and «j, it is sufficient, within the approxima-

tion we adopted, to consider the main contributions

_ 2sinhhy; |
i:HhT,ujlsm hk;,

.2 ki . .
a; = p(coshh,ujcoshkj +—Lsinh husin hk; - 1).
Hi

(3.6
It follows from Egs.(3.4) that

... 8o . . .
M + ij = Fe ILllSll"II’]")'I’],U. E Sj|eXF[SJ'|(_ A]l + |)(j|)],
I=j+1

where time-independent quantitipsand ¢ are defined by

p?=[cothhu — (hu) 1]%sirthk + coghk,

d?q;
—ql = @lj+179 — eqj_qj—l,

972 (3.1)

where 7=(2p/h%¥?)t sinhhu is the normalized time and we
take formallye™%=¢giNv+1=0. The CTC model has been pre-
viously derived for the continuous equatigqi§—20d. Hence,
our result is a new evidence of universality of the CTC
model for trainlike configurations.

We ought to stress the importance of the fact that Eq.
(3.11) describes theomplexToda chain model. At first sight,
the appearance of exponential interaction in Bql1) seems
quite natural, since it comes from the tail-tail interaction
which is essentially linear, governed by the Green function
and should be exponential. This simple argument, however,
would be valid in the case of theeal Toda chain(RTC).
Second, and it is much more important, the real and complex
Toda chain models differ qualitatively from the point of view
of dynamics. It is well knowri24,25 that the RTC withN
nodes admits the Lax representati@il/d7)=[L,A] with
N X N matrices
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N !’_
, vh ,
L =2 [byey + a1+ €n)], 1712 by=rAw, j=1.2,8,
j=1

where Auj=pu;—u, 2j Ap;=0 in virtue of tL=0 and we
N have taken into account thet= /2 andp=1 for k=0. Here
A= ai(e.1- €41, (8= Sy, ro=xY-x?=x?-x? denotes the initial intersoliton dis-
i=1 tance and we take, to be an integerny=m. Then e=exp
—-pumh). The characteristic equation for determinigghas
the form 3+ pZ+q=0, where

1 1 1dg;

= Z(0iis — O ==
aJ Zexp|: 2(q]+1 q]):|, b] 2dr ) (3-12) e—,u,mh - . h
p= 2 (€1 +€'2)sintthyu — Z(A,ulA,uZ +ApAusg

(&j))k=0 whenevek or | becomes 0 oN+1. In virtue of the

algebraic nature of the Lax representation, it is valid for the + ApoAug), (4.1a
CTC as well[in this caseb;=(vh/2)exp(—i)\;]. The Toda
model hasN integrals of motion in involution, real for the \m gumh
real model[25] and complex for the complex orj&8], these q=- _[ 5 (Apa€"1 + A, €72)sintPh
integrals being the eigenvalugsof the matrixL. 2 h

For the RTC we have; # ¢, for j#k. Since Z; deter- h
mines the asymptotic velocity of tHéh RTC “particle,” we - ZAﬂlAM2AM3:| , (4.1b

conclude that all RTC particles have pairwise different ve-
Lgﬁlctzglsya;rnse’ g?l_g :)(Zsrzlctievge arrive at a collection of asyMPand Fk:a(k‘fl—aﬁo). We will consider two configurations of

A completely different situation arises for the CTC. the soliton masses
Asymptotic velocities are given by &£=2 Re(j, ] M1 Amy=pB, Auy=0, Auz=-p,
=1,... N, and we can have 2 Rg=2 Re( together with
§;# { As a result, we can generally; # { for j #k) dis-

criminate between the asymptotically free regift&FR) M2: Apg=Apz=7y, Aupy=-2y,
\é\ih:egr; Ejfgzkg,\?r;nﬁ Ii(ﬁt;hr‘ranggil;?g rset;ﬁgﬂvnﬁfns 2“\;\/223_ B and y are real-valued parameters. The roots of the third-

order algebraic equation are given by the well-known Car-

eral of the parameter§ are equal.
P % q ggno formulas

There are also some singular and degenerate regim
which correspond to a nongeneric case of coincidence of
some eigenvalueg. This subject is out of the scope of the

present paper. where

IV. THE AL SOLITON TRAIN VIA THE CTC A= [-9, JQ, B= *l_a_ 0
2 2 '

It is important that since; (3.10 is expressed in terms of

L=A+B, L=wA+w’B, (=0’A+wB,

position and phase of thgh soliton, we can analyze soliton 5 3 o
train dynamics in terms of the CTC. Becau$ere integrals Q= a., p_, ©= exr(—m). (4.2)
of motion, it is sufficient to know their initial values. On the 4 27 3

other hand,{; are expressed through soliton parameters, ) ) ) o )
initial AL soliton parameters for which thal-soliton train ~ ferent possibilities of the roots’ structure.

will evolve to a prescribed dynamical regime. In particular,

to describe the BSR, we should solve the characteristic equa- A. The case of realp and g

tion defL—-¢1)=0 and impose the restriction Rg=Re {, (i) Q<0 leads top< py=-3(cq%/4)¥2 and all roots be-

:“L.e:tii%“ﬁstrate this approach on an example of the simS°Me real and generically pairwise different. Hence we ob-
- = PD . P tain the AFR. For a special choice of the parameters the AFR
plest nontrivial cas&=3 when a soliton has neighbors both

from the left and from the right. For simplicity we consider is transformed to the IR.

zero initial velocitiesk;(0)=0. Our analysis is not compre- (i) Q>0 andq#0. This leads to reah and B. Hence
. 1 . y omp one root is real and the other two are complex conjugate.
hensive but we comment on main features of the integral

. q ith 1 SThis situation corresponds to the IR.
arrangement. In accordance with 8.1, (i) Q>0 and g=0. The characteristic equation gives

. h . £1=0, £, 3=£v-p, p>0. Hence, all roots have Rg=0 and
i i :

aj=- —exp[— —Mr0+ _(aj@l_ aJ(0>) sinhhg, we arrive at the BSR. _
h 2 2 (iv) Q=0. All the roots are real which means the AFR.

056607-4



DYNAMICS OF THE ABLOWITZ-LADIK SOLITON TRAIN

B. The case ofp=p and q=—q
(i) Q>0. This givesA:—Eand, as a YESU“Q:‘ZJ- We
arrive at the BSR.

(i) Q<O0. Then{lz—zl and 532—22 which leads to the
AFR.

Let us consider in more detail the most interesting regime,
the BSR. We have predicted above two possibilities to

choose the root arrangement for producing the BSR:

(@ p>0, g=0,

2 3
TP oo

() 4 27

pP=p. 9=-q
For casqa) we should posé’;=-I',=Y in Eq. (4.1 to pro-
vide reality of p which gives for the configuratiom1

1, 1, 1,
lezéV COSY"‘Zh,B, qM1:ZV hgsinY,

and for the configuratioiv2

f

1 3 /h

Here v=(2/h)exp(-(1/2)umh)sinhhu. The conditiongy,
=0 gives Y=nm, n=0,1 and py;=hB%/4+(-1)"?/2.
Hence,py1>0 for n=0, while forn=1 py;;>0 if

1B > (2/h)*2p. (4.3

Similarly, qgu,=0 gives cosY=-hy?/1? and py,
=hy?/4>0, together with the restrictiohy?/12<1. Case
(b) survives for the configuratioM?2 only and leads to the
condition for the BSR of the form (r/2) <Y <(#/2) and
(9/8)hy2[ 12> 1.

Now we consider some features of the cagewith Y

= and restrict ourselves to the symmetric solution of the

N=3 CTC model[19],

cosh2{y7+6)+1
Az

Qi(7) =In =0, gz3=-0,

(4.4)

éis a complex constant. Here the eigenvalues are given by

L=iVp, £=0, L=-iVp, p=(1/4)hB%-(1/2)17>0. A useful
characteristic illustrating the BSR of the soliton train is the

distance between the extreme left and right solitons, in our

case 2(7)=X3(7)—X;(7). It can be shown from Eq4.4) that

sinkPhu

2p ————[coshé, + cos{2\ pr+8)]|.

r(r) = hil
(4.5

Here 5= 6, +i8=In(wz/w;) andwJ is a first component of the
eigenvector vj, (L—¢j)v;=0, normalized by (v;,v)=1.

PHYSICAL REVIEW E 69, 056607(2004)
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100
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-2 10 30 m

FIG. 1. Quasiequidistant propagation of the three-soliton train
provided by numerical solution of the AL equation with the pre-
dicted parameters=0.9, ©=0.5,m=18, andB=0.05.

1 | sintPhu
max P +
r(mm> h,ul [ e (coshs, 1)]
Solving the eigenvalue problem, we obtain
o+Vo?-1 \/E,B
S=In—Fm—, &=m, =4/z—>1. (4.6
r o— \“10-2_ 1 I ™ 2 v ( )

Hence, for solitons witfy =7, that is with alternating phases
(0,7,0) and the mass configuratiod1, the minimal dis-
tance coincides with the initial oney,,=rq, while the maxi-
mal distance is equal to

o
he 021

As it follows from Eq.(4.5), a periodT of oscillations be-
tween the maximal and minimal distances is given by
=7h32/2pY%sinh hu. It should be stressed that the choice of
the initial soliton parameters is rather flexible and we can
vary to some extent the intersoliton distance and lattice spac-
ing maintaining the smallness efexp—umh).

Mmax= r0+

V. COMPARISON WITH NUMERICAL SIMULATIONS

In this section we compare the predictions of the CTC
model with the results of numerical solution of the AL equa-
tion. At first we consider the BSR. It follows from the pre-
ceding Section that for the three-soliton train with alternating

t
500

400

200

100

T T T T T
=20 -10 0 10 20 m

FIG. 2. Trajectories of solitons within the three-soliton train.
Solid curves give numerical results, dashed curves correspond to
predictions from the symmetric solution of the Toda chain model.

Hence, the extremal distances between solitons are given Barameters are the same as in Fig. 1.
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600

500

400 4

300 o

200

100 4

-?:0 -2‘0 10 2‘0 3‘0 m

FIG. 3. The appearance of the asymptotically free regime when FIG. 4. The asymptotic intermediate regime of the three-soliton
the condition(4.3) is not fulfilled. The parameters are the same as intrain propagation corresponding to the choice of soliton parameters
Fig. 1, except for3=0.01. (i) in Sec. IV A. The phase arrangement(&7/3,0,-27/3), the

) . . parameterd), , andm are the same as before, the paramgtés
phaseq0,7,0) and mass configuratioh1 we arrive at the  ¢5icylated by the formula given in the text. The initial stage of the

BSR provided the conditio4.3) is fulfilled. Let us choose ain evolution demonstrates a transient process in the soliton
the parameters as=0.9 andu=0.5 with r,=m=18 which  jnteraction.

gives (2/h)Y?y=0.017. ThenB=0.05 obeys the condition

(4.3). Such a choice of the parameters corresponds to the . . . - .
same value of (2.3) that was used for simulations in the N-soliton train. Comparison of analytical predictions with

continuous modell8,19. Figure 1 illustrates the numerical Numerical simulations demonstrates a very good agreement.
solution of the AL equation for the three-soliton train with W& conjecture that because of the universality of the CTC
the above parameters. We see that the Toda chain mod&lodel _for descrlpuon oN-soliton train dy_nam|cs, the _above
predicts correctly the quasiequidistant regime of the train dy2nalysis can be implemented to actual discrete physical prob-
namics for the large time intervalip tot=500 at leagt A lems, despite a restricted applicability of the AL model. It
comparison of the soliton trajectories(t) calculated from should be pointed out in this connection that starting from a

Egs.(3.10 and(4.4) and directly by solving the AL equation Nonintegrable discrete soliton model, we will still derive a
is given in Fig. 2. perturbed CTC model. In the case of a small perturbed term,

To illustrate the AFR, it is sufficient to note that a viola- & method developed by Garnier and Abdulld@€] can be
tion of the condition(4.3) leads to appearance of pairwise successfully employed to the perturbed Toda equation. We
different real parts of the eigenvalugs and hence to the mention as well that the adiabatic soliton dynamics does not

AFR. Hence, for3=0.01 we predict the AFR. This predic- account for radiation which could arise as a result of a soli-
tion is confirmed numericallysee Fig. 3. ton interaction within the traif27]. A formalism to incorpo-

Finally, the IR is realized asymptotically for choi@é) in rate perturbation-indu_ced radiati.on effects for the AL soliton
Sec. IV A. Taking for definitenesp=0, we obtain for the Nas been proposed in Re28] in the framework of the
configurationM1 cosY=-hB2/212. Hence we can choose Gel’fand-ngtan-Ilke summation equations and in Ré0|
Y=27/3 which givesg=v/ h. Taking the soliton param- ©n the basis of the Riemann-Hilbert problem.
eters ash=0.9, ©=0.5, andm=18 with B calculated by
means of the above formula, numerical solution of the AL
equation demonstrates, after some transient period, the ACKNOWLEDGMENTS
steady state intermediate regirtieg. 4).
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