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It is shown that dynamics of a train ofN weakly interacting Ablowitz-Ladik solitons with(almost) equal
velocities and masses is governed by the complex Toda chain model. The integrability of the complex Toda
chain model provides the means to describe analytically various dynamical regimes of theN-soliton train and
to predict initial soliton parameters responsible for each of the regimes. Numerical simulations corroborate well
analytical predictions. A specific feature arising for the discrete soliton train system is the appearance of an
additional (with respect to the lattice spacing) spatial scale-intersoliton distance. We comment on interplay
between both spatial scales.
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I. INTRODUCTION

Currently energy localization in nonlinear lattices has at-
tracted a great deal of attention. For recent reviews we refer
to Refs. [1,2]. Two equations are frequently used to study
nonlinear discrete systems—the discrete nonlinear
Schrödinger(DNLS) equation and the Ablowitz-Ladik(AL )
equation. Though both of them represent discretizations of
the completely integrable continuous nonlinear Schrödinger
(NLS) equation, their properties are crucially different. The
DNLS equation, arising in many areas as an adequate model,
is nonintegrable[3,4] and admits quantitative investigation
numerically, as a rule. Contrary, it is the AL equation that
makes the integrable discrete counterpart of the NLS equa-
tion [5], hence enabling us to perform as complete as pos-
sible analytical description of an underlying discrete system.

As compared with the DNLS equation, the AL equation
found a rather limited area of applications. Nevertheless,
there exist at least two reasons justifying a comprehensive
analysis of the AL equation. First, this equation serves as a
proving ground for testing new analytical and numerical ap-
proaches to study discrete systems(e.g., study of numerical
homoclinic instabilities for the DNLS and AL equations[6]).
Second, for a definite region of parameters, the DNLS equa-
tion can be treated as a perturbed version of the AL equation,
thereby allowing for considerable progress in the analytical
study in the framework of the AL soliton perturbation theory.
This idea has been initiated in early papers by Vakhnenko
and Gaididei[7] on a soliton motion in a discrete molecular
chain, by Kivshar and Campbell[8] on a modeling of the
Peierls-Nabarro potential barrier, and by Aceveset al. [9] on
the self-trapping phenomenon in one-dimensional waveguide
arrays[10]. Recently, the same approach has been employed
to study discrete soliton dynamics in random media[11],
energy transport ina-helical proteins[12], and dissipative

coherent structures in discrete systems[13,14]. A model of
two coupled AL lattices which admits a reduction to inte-
grable symmetric states was considered by Malomed and
Yang [15].

In this paper we address a new issue concerning the dis-
crete solitons—to describe analytically dynamics of a dis-
crete soliton train. An interesting problem of characterization
of solitons present in numerical or experimental data has
been discussed by Boitiet al. [16] in the context of a train of
envelope wave pulses modeled by the AL equation on a finite
interval. By a soliton train is meant an ordered sequence ofN
discrete (temporal or spatial) weakly interacting solitons
propagating(or extending) in the same direction with(al-
most) equal velocities. Though this problem has been con-
sidered for continuous systems[17–20], a novel feature
arises in the discrete case. Namely, two spatial scales appear
in a discrete system for a soliton train-lattice spacing and
intersoliton distance. Hence, a question can be posed about
interplay between these two scales. Recently Soto-Crespoet
al. [21] put forward some arguments in favor of a relevance
of the AL equation for the description of soliton dynamics in
a waveguide array with account for coupling through a non-
linear medium located between the waveguides. In this con-
nection, as an example of a concretization of the problem
posed in our paper, we can refer to simultaneous launching
of power to different places of a nonlinear waveguide array.
Evidently, different distributions of power are possible at the
exit of this device. We give for the AL equation an efficient
analytical description, on the basis of the complex Toda
chain(CTC) model, of various regimes of power distribution
and, in particular, predict values of initial soliton parameters
to provide a bound-state-like evolution of the discrete soliton
train.

In Sec. I we formulate a model and identify a region of
the AL solitons’ parameters which provide a trainlike con-
figuration of solitons. Section II is devoted to a derivation of
the Toda chain model. Here we emphasize a crucial differ-
ence between the dynamical regimes admitted by the real
and complex Toda models. In Sec. III we continue a discus-
sion of the interrelation between the AL model and the CTC
model and perform a detailed analysis of such an interrela-
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tion for the particular case ofN=3. From an analysis of the
integrals of motion of the CTC model we predict values of
initial AL solitons’ parameters responsible for particular dy-
namical regimes of the AL soliton train dynamics. Section IV
contains a comparison of analytical predictions with the re-
sults of numerical simulations.

II. THE AL SOLITON TRAIN MODEL

As is well known [5], the AL equation(the overdot de-
notes time derivative)

iu̇n +
1

h2sun+1 + un−1 − 2und + uunu2sun+1 + un−1d = 0

s2.1d

for a scalar complex functionu defined on an infinite 1D
lattice with the lattice spacingh has an exact soliton solution

unstd =
sinh hm

h

exp fikhsn − xd + iag
coshhmsn − xd

, s2.2d

where

xstd =
2t

h

sinh hm

h2m
sin hk+ xs0d,

astd =
2t

h2Scoshhm coshk+
k

m
sinh hm sin hk− 1D + as0d.

The solution(2.2) depends on four real parametersm (soliton
mass M =2hm), k [group velocity vgr
=s2/h2mdsinh hm sin hk and phase velocityvph=s2/h2kds1
−coshhm coshkd], xs0d (soliton initial position), and as0d

(initial phase). The inverse spectral transform method pro-
vides the complete analytical description of the AL soliton
interaction in a generic case ofN solitons moving with pair-
wise different velocities and being asymptotically free for
n→ ±` [5]. Contrary, we are interested here in a chain-like
configuration of an ordered sequence ofN sNù2d weakly
interacting solitons with(nearly) equal masses and velocities
that are spaced apart almost equally. In other words, we sup-
pose that theN-soliton solution to the AL equation for the
soliton train is a result of the evolution of the initial configu-
ration

uns0d = o
j=1

N

un
s jds0d,

representing a sum of weakly overlapping one-soliton exci-
tations each of which is characterized by the parametersm j,
kj, xj

s0d, anda j
s0d. The smallness of the adjacent soliton over-

lapping is determined by a small parameter

e = exps− hmuxj
s0d − xj±1

s0d ud, s2.3d

e!1 for all j and m is the mean valuem=N−1o j=1
N m j. We

consider the interaction force between the neighboring soli-
tons being of the order of their overlap. Therefore, we restrict
ourselves by the nearest-neighbor interaction.

Now we formulate more precisely conditions on the soli-
tons’ parameters providing the trainlike configuration. Let us
denoteyj =hm jsn−xjd and takexj+1.xj. Then

yj+1 = S1 −
m j+1 − m j

m j
Dyj − hm jsxj+1 − xjd.

We pose

um j±1 − m ju ! m. s2.4d

This condition means that solitons have almost equal masses.
Therefore,yj+1−yj <−hmsxj+1−xjd and in accordance with
our assumption about the tail-tail interaction we should pose

hmuxj±1 − xju @ 1. s2.5d

Considering the phase differencex j+1,j of the phaseshkjsn
−xjd+a j of adjacent solitons, we represent it as

x j+1,j = m−1skj+1 − kjdyj − hkj+1sxj+1 − xjd + a j+1 − a j .

The proximity of soliton velocities implies the validity of the
condition

ukj±1 − kju ! m, s2.6d

with the result that the phase difference is written as

x j+1,j = − hkj+1S1 +
m − m j+1

m j+1
Dsxj+1 − xjd + a j+1 − a j .

Finally, the condition

hum j − muuxj − xj±1u ! 1 s2.7d

makes it possible to write the phase difference as

x j+1,j = − hksxj+1 − xjd + a j+1 − a j

with the mean valuek=N−1o j=1
N kj. The conditions(2.4)–(2.7)

represent the discrete analog of the corresponding conditions
formulated within the quasiparticle approach for continuous
equations[22].

III. THE COMPLEX TODA CHAIN MODEL

Substituting the sumlike solution into Eq.(2.1), we obtain
that thej th soliton is governed by the perturbed AL equation

iu̇n
s jd +

1

h2sun+1
s jd + un−1

s jd − 2un
s jdd + uun

s jdu2sun+1
s jd + un−1

s jd d = ern
s jd,

s3.1d

where the perturbation(the overbar means complex conjuga-
tion)

ern
s jd = − uun

s jdu2sun+1
s j−1d + un−1

s j−1d + un+1
s j+1d + un−1

s j+1dd − fun
s jdsūn

s j−1d

+ ūn
s j+1dd + ūn

s jdsun
s j−1d + un

s j+1ddgsun+1
s jd + un−1

s jd d s3.2d

results from the interaction of neighboring solitons with the
j th soliton. Within the limits of the adiabatic approximation
of the soliton perturbation theory, a perturbation-induced
evolution of the parametersm j andkj is given by the equa-
tions [7]
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ṁ j =
sinh hm j

h
o

n=−`

`
ImseRn

s jddcoshyj

coshsyj + hm jdcoshsyj − hm jd
,

k̇j = −
sinh hm j

h
o

n=−`

`
ReseRn

s jddsinh yj

coshsyj + hm jdcoshsyj − hm jd
,

s3.3d

where Rn
s jd=rn

s jdexpf−ihkjsn−xjd− ia jg. Substituting the soli-
ton (2.2) into the perturbation formula(3.2) and performing
calculation according to Eq.(3.3), we obtain evolution ofm j
andkj in the form (no summation in repeated indices)

ṁ j = 8
sinh3hm

h4 o
l=j±1

sjle
−D̃ jlfcos x̃ jlscoth hm − shmd−1dsin hk

+ sin x̃ jlcoshkg, s3.4ad

k̇j = 8
sinh3hm

h4 o
l=j±1

sjle
−D̃ jlfsin x̃ jlscoth hm − shmd−1dsin hk

− cosx̃ jlcoshkg. s3.4bd

Heresj ,j±1= 71, D̃ jl =sjlD jl , x̃ jl =sjlx jl , and

D jl = hmsxj − xld, x jl = − hksxj − xld + a j − al . s3.5d

In the process of calculating the sums in Eq.(3.3) we in-
voked the Poisson summation formula[23]

o
n=−`

`

fsnmd =
1

m
E

−`

`

dy fsydF1 + 2o
s=1

`

cos
2p sy

m
G

and neglected the terms with the factore exps−p2s/md ,s
=1,2, . . . ,which for m<1 are small. It can be shown that the
mean valuesm and k calculated along these lines do not
depend on time, as should be. As regards the evolution of the
parametersxj and a j, it is sufficient, within the approxima-
tion we adopted, to consider the main contributions

ẋj =
2

h

sinh hm j

h2m j
sin hkj ,

ȧ j =
2

h2Scoshhm jcoshkj +
kj

m j
sinh hm jsin hkj − 1D .

s3.6d

It follows from Eqs.(3.4) that

ṁ j + ik̇ j =
8r

h4 e−icsinh3hm o
l=j±1

sjlexpfsjls− D jl + ix jldg,

where time-independent quantitiesr andc are defined by

r2 = fcoth hm − shmd−1g2sin2hk+ cos2hk,

c = arctan
cot hk

coth hm − shmd−1 .

Hence, a quantityl j =m j + ikj −sm+ ikd obeys the evolution
equation

l̇ j = 2
sinh hm

h2 sEj ,j−1 − Ej+1,jdreic, s3.7d

where

Ej ,j−1 = s4/h2dexps− D j ,j−1 + ix j ,j−1 − 2icd. s3.8d

In turn, it follows from Eqs.(3.5) and (3.6) that

− Ḋ jl + iẋ jl = −
2

h
sl j − lldre−icsinh hm.

Therefore,

Ėj ,j−1 = − s2/hdsl j − l j−1dEj ,j−1re−icsinh hm.

This relation suggests that we can writeEj ,j−1 as Ej ,j−1
=expsqj −qj−1d, where a complex functionqj obeys the evo-
lution equation

q̇j = − s2/hdl jre−icsinh hm s3.9d

and hence

qj = − hsm + ikdxj + ia j + smvgr + ikvphdt + 2j ln
2 sinhhm

h

− 2i j c, s3.10d

with vgr andvph being the mean group and phase velocities
which are given by the same relations as for the single soli-
ton (2.2) but for mean values ofm andk. Now it is straight-
forward to show due to Eqs.(3.7) and(3.9) that the function
qj obeys the completely integrable complex Toda chain
(CTC) equation withN nodes

d2qj

dt2 = eqj+1−qj − eqj−qj−1, s3.11d

wheret=s2r /h3/2dt sinh hm is the normalized time and we
take formallye−q0=eqN+1=0. The CTC model has been pre-
viously derived for the continuous equations[17–20]. Hence,
our result is a new evidence of universality of the CTC
model for trainlike configurations.

We ought to stress the importance of the fact that Eq.
(3.11) describes thecomplexToda chain model. At first sight,
the appearance of exponential interaction in Eq.(3.11) seems
quite natural, since it comes from the tail-tail interaction
which is essentially linear, governed by the Green function
and should be exponential. This simple argument, however,
would be valid in the case of thereal Toda chain(RTC).
Second, and it is much more important, the real and complex
Toda chain models differ qualitatively from the point of view
of dynamics. It is well known[24,25] that the RTC withN
nodes admits the Lax representationsdL/dtd=fL ,Ag with
N3N matrices
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L = o
j=1

N

fbjejj + ajsej ,j+1 + ej+1,jdg,

A = o
j=1

N

ajsej+1,j − ej ,j+1d, seijdkl = dikd jl ,

aj =
1

2
expF1

2
sqj+1 − qjdG, bj = −

1

2

dqj

dt
, s3.12d

seijdkl=0 wheneverk or l becomes 0 orN+1. In virtue of the
algebraic nature of the Lax representation, it is valid for the
CTC as well[in this casebj =sÎh/2dexps−icdl j]. The Toda
model hasN integrals of motion in involution, real for the
real model[25] and complex for the complex one[18], these
integrals being the eigenvaluesz j of the matrixL.

For the RTC we havez j Þzk for j Þk. Since 2z j deter-
mines the asymptotic velocity of thej th RTC “particle,” we
conclude that all RTC particles have pairwise different ve-
locities and, as a result, we arrive at a collection of asymp-
totically free RTC particles.

A completely different situation arises for the CTC.
Asymptotic velocities are given by 2j j ;2 Rez j, j
=1, . . . ,N, and we can have 2 Rez j =2 Rezk together with
z j Þzk. As a result, we can generally(z j Þzk for j Þk) dis-
criminate between the asymptotically free regime(AFR)
when j j Þjk for j Þk, the bound state regime(BSR) when
j1=j2=¯ =jN, and intermediate regime(IR) when only sev-
eral of the parametersj j are equal.

There are also some singular and degenerate regimes
which correspond to a nongeneric case of coincidence of
some eigenvaluesz j. This subject is out of the scope of the
present paper.

IV. THE AL SOLITON TRAIN VIA THE CTC

It is important that sinceqj (3.10) is expressed in terms of
position and phase of thej th soliton, we can analyze soliton
train dynamics in terms of the CTC. Becausez j are integrals
of motion, it is sufficient to know their initial values. On the
other hand,z j are expressed through soliton parameters.
Therefore, we can pose a question: how to specify the set of
initial AL soliton parameters for which theN-soliton train
will evolve to a prescribed dynamical regime. In particular,
to describe the BSR, we should solve the characteristic equa-
tion detsL−z1d=0 and impose the restriction Rez1=Rez2

=¯ =RezN.
Let us illustrate this approach on an example of the sim-

plest nontrivial caseN=3 when a soliton has neighbors both
from the left and from the right. For simplicity we consider
zero initial velocitieskjs0d=0. Our analysis is not compre-
hensive but we comment on main features of the integrals’
arrangement. In accordance with Eq.(3.12),

aj = −
i

h
expF−

hm

2
r0 +

i

2
sa j+1

s0d − a j
s0ddGsinh hm,

j = 1,2; bj =
Îh

2i
Dm j, j = 1,2,3,

where Dm j =m j −m, o j Dm j =0 in virtue of trL=0 and we
have taken into account thatc=p /2 andr=1 for k=0. Here
r0=x2

s0d−x1
s0d=x3

s0d−x2
s0d denotes the initial intersoliton dis-

tance and we taker0 to be an integer,r0=m. Thene=exps
−mmhd. The characteristic equation for determiningz j has
the formz3+pz+q=0, where

p =
e−mmh

h2 seiG1 + eiG2dsinh2hm −
h

4
sDm1Dm2 + Dm1Dm3

+ Dm2Dm3d, s4.1ad

q = −
Îh

2i
Fe−mmh

h2 sDm3e
iG1 + Dm1e

iG2dsinh2hm

−
h

4
Dm1Dm2Dm3G , s4.1bd

and Gk=ak+1
s0d −ak

s0d. We will consider two configurations of
the soliton masses

M1: Dm1 = b, Dm2 = 0, Dm3 = − b,

M2: Dm1 = Dm3 = g, Dm2 = − 2g,

b and g are real-valued parameters. The roots of the third-
order algebraic equation are given by the well-known Car-
dano formulas

z1 = A + B, z2 = vA + v2B, z3 = v2A + vB,

where

A =Î3 −
q

2
+ ÎQ, B =Î3 −

q

2
− ÎQ,

Q =
q2

4
+

p3

27
, v = expS2pi

3
D . s4.2d

Their analysis make it possible to discriminate between dif-
ferent possibilities of the roots’ structure.

A. The case of realp and q

(i) Q,0 leads top,pcr=−3sq2/4d1/2 and all roots be-
come real and generically pairwise different. Hence we ob-
tain the AFR. For a special choice of the parameters the AFR
is transformed to the IR.

(ii ) Q.0 andqÞ0. This leads to realA and B. Hence
one root is real and the other two are complex conjugate.
This situation corresponds to the IR.

(iii ) Q.0 and q=0. The characteristic equation gives
z1=0, z2,3= ±Î−p, p.0. Hence, all roots have Rez j =0 and
we arrive at the BSR.

(iv) Q=0. All the roots are real which means the AFR.
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B. The case ofp= p̄ and q=−q̄

(i) Q.0. This givesA=−B̄ and, as a result,z j =−z̄ j. We
arrive at the BSR.

(ii ) Q,0. Thenz1=−z̄1 and z3=−z̄2 which leads to the
AFR.

Let us consider in more detail the most interesting regime,
the BSR. We have predicted above two possibilities to
choose the root arrangement for producing the BSR:

sad p . 0, q = 0,

sbd p = p̄, q = − q̄,
q2

4
+

p3

27
. 0.

For case(a) we should poseG1=−G2=Y in Eq. (4.1) to pro-
vide reality ofp which gives for the configurationM1

pM1 =
1

2
n2 cosY +

1

4
hb2, qM1 =

1

4
n2hb sin Y,

and for the configurationM2

pM2 =
1

2
n2 cosY +

3

4
hg2, qM2 = ig

Îh

4
sn2 cosY + hg2d.

Here n=s2/hdexps−s1/2dmmhdsinh hm. The conditionqM1

=0 gives Y=np, n=0,1 and pM1=hb2/4+s−1dnn2/2.
Hence,pM1.0 for n=0, while for n=1 pM1.0 if

ubu . s2/hd1/2n. s4.3d

Similarly, qM2=0 gives cosY=−hg2/n2 and pM2
=hg2/4.0, together with the restrictionhg2/n2,1. Case
(b) survives for the configurationM2 only and leads to the
condition for the BSR of the form −sp /2d,Y, sp /2d and
s9/8dhg2/n2.1.

Now we consider some features of the case(a) with Y
=p and restrict ourselves to the symmetric solution of the
N=3 CTC model[19],

q1std = ln
coshs2z1t + dd + 1

4z1
2 , q2 = 0, q3 = − q1,

s4.4d

d is a complex constant. Here the eigenvalues are given by
z1= iÎp, z2=0, z3=−iÎp, p=s1/4dhb2−s1/2dn2.0. A useful
characteristic illustrating the BSR of the soliton train is the
distance between the extreme left and right solitons, in our
case 2rstd=x3std−x1std. It can be shown from Eq.(4.4) that

rstd =
1

hm
lnFsinh2hm

h2p
fcoshdr + coss2Îpt + didgG .

s4.5d

Hered=dr + idi =lnsw3/w1d andwj is a first component of the
eigenvector v j, sL−z jdv j =0, normalized by sv j ,v jd=1.
Hence, the extremal distances between solitons are given by

rSmax

min
D =

1

hm
lnFsinh2hm

h2p
scoshdr ± 1dG .

Solving the eigenvalue problem, we obtain

dr = ln
s + Îs2 − 1

s − Îs2 − 1
, di = p, s =Îh

2

b

n
. 1. s4.6d

Hence, for solitons withY=p, that is with alternating phases
s0,p ,0d and the mass configurationM1, the minimal dis-
tance coincides with the initial one,rmin=r0, while the maxi-
mal distance is equal to

rmax= r0 +
1

hm
ln

s2

s2 − 1
.

As it follows from Eq. (4.5), a periodT of oscillations be-
tween the maximal and minimal distances is given byT
=ph3/2/2p1/2sinh hm. It should be stressed that the choice of
the initial soliton parameters is rather flexible and we can
vary to some extent the intersoliton distance and lattice spac-
ing maintaining the smallness ofe=exps−mmhd.

V. COMPARISON WITH NUMERICAL SIMULATIONS

In this section we compare the predictions of the CTC
model with the results of numerical solution of the AL equa-
tion. At first we consider the BSR. It follows from the pre-
ceding Section that for the three-soliton train with alternating

FIG. 1. Quasiequidistant propagation of the three-soliton train
provided by numerical solution of the AL equation with the pre-
dicted parametersh=0.9, m=0.5, m=18, andb=0.05.

FIG. 2. Trajectories of solitons within the three-soliton train.
Solid curves give numerical results, dashed curves correspond to
predictions from the symmetric solution of the Toda chain model.
Parameters are the same as in Fig. 1.
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phasess0,p ,0d and mass configurationM1 we arrive at the
BSR provided the condition(4.3) is fulfilled. Let us choose
the parameters ash=0.9 andm=0.5 with r0=m=18 which
gives s2/hd1/2n=0.017. Thenb=0.05 obeys the condition
(4.3). Such a choice of the parameters corresponds to the
same value ofe (2.3) that was used for simulations in the
continuous models[18,19]. Figure 1 illustrates the numerical
solution of the AL equation for the three-soliton train with
the above parameters. We see that the Toda chain model
predicts correctly the quasiequidistant regime of the train dy-
namics for the large time interval(up to t=500 at least). A
comparison of the soliton trajectoriesxjstd calculated from
Eqs.(3.10) and(4.4) and directly by solving the AL equation
is given in Fig. 2.

To illustrate the AFR, it is sufficient to note that a viola-
tion of the condition(4.3) leads to appearance of pairwise
different real parts of the eigenvaluesz j and hence to the
AFR. Hence, forb=0.01 we predict the AFR. This predic-
tion is confirmed numerically(see Fig. 3).

Finally, the IR is realized asymptotically for choice(ii ) in
Sec. IV A. Taking for definitenessp=0, we obtain for the
configurationM1 cosY=−hb2/2n2. Hence we can choose
Y=2p /3 which givesb=n /Îh. Taking the soliton param-
eters ash=0.9, m=0.5, andm=18 with b calculated by
means of the above formula, numerical solution of the AL
equation demonstrates, after some transient period, the
steady state intermediate regime(Fig. 4).

VI. CONCLUSION

We have shown in this paper that the CTC model provides
an adequate basis to describe adiabatic dynamics of the AL

N-soliton train. Comparison of analytical predictions with
numerical simulations demonstrates a very good agreement.
We conjecture that because of the universality of the CTC
model for description ofN-soliton train dynamics, the above
analysis can be implemented to actual discrete physical prob-
lems, despite a restricted applicability of the AL model. It
should be pointed out in this connection that starting from a
nonintegrable discrete soliton model, we will still derive a
perturbed CTC model. In the case of a small perturbed term,
a method developed by Garnier and Abdullaev[26] can be
successfully employed to the perturbed Toda equation. We
mention as well that the adiabatic soliton dynamics does not
account for radiation which could arise as a result of a soli-
ton interaction within the train[27]. A formalism to incorpo-
rate perturbation-induced radiation effects for the AL soliton
has been proposed in Ref.[28] in the framework of the
Gel’fand-Levitan-like summation equations and in Ref.[29]
on the basis of the Riemann-Hilbert problem.
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